2012-2013 Undergraduate Academic Assessment Plan

Computer Engineering

Computer Engineering College of Engineering Herman Lam, hlam@ufl.edu

Computer Engineering Program College of Engineering

Undergraduate Academic Assessment Plan

Mission Statement

The Computer Engineering Program Mission statement, as listed in the University of Florida Catalog:

- To educate undergraduate and graduate majors as well as the broader campus community in the fundamental concepts of the computing discipline,
- To create and disseminate computing knowledge and technology, and
- To use our expertise in computing to help society solve problems.

This mission statement supports the three-fold UF Mission Statement: teaching, research & scholarship, and service, and the related Mission Statement of the College of Engineering (to foster and provide world-class programs in engineering education, research and service to enhance the economic and social well-being of the citizens of Florida, the nation and the world), by:

- Teaching students in the computing discipline,
- Equipping them with the foundation for future graduate studies, as an integral part of the education process, and
- Enabling our students to serve the needs of the broader society

The goal of Computer Engineering is to bring a core competency and unique value of integrated knowledge in both computer software and hardware, as compared to Computer Science or Electrical Engineering. Computer Engineering provides a balance among computer systems, hardware and software as well as theory and applications. Opportunities for cooperative education provide students a better understanding of the industrial applications of computer engineering technologies. By properly choosing electives, students can specialize in computer systems, computer communications, networking, computer vision, embedded systems, pattern recognition, artificial intelligence, multi-media systems, or other areas. Graduates can pursue graduate studies in computer engineering or they can choose from many different careers related to computers and their applications in high technology environments.

Specialization in Computer Engineering is provided via technical electives with software or hardware emphases. Technical electives with software emphasis are offered primarily in the Department of Computer and Information Science and Engineering and those with hardware emphasis are primarily in the Department of Electrical and Computer Engineering.

Student Learning Outcomes (SLOs)

The student acquires the following skills in the Computer Engineering major in the College of Engineering:

- 1. Apply knowledge of mathematics and science to computer engineering problems.
- 2. Design and conduct computer-engineering experiments, analyzing and interpreting the data.
- 3. Design a computer engineering system, component or process to meet desired needs within realistic economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability constraints.
- 4. Communicate technical data and design information effectively in writing and in speech to other computer scientists and engineers.

For the Academic Learning Compact for this program in the University of Florida catalog, see https://catalog.ufl.edu/ugrad/current/engineering/ALC/computer-engineering.aspx. See https://catalog.ufl.edu/ugrad/current/engineering/ALC/computer-engineering.aspx. See

Curriculum Map

Curriculum Map for:

Computer Engineering Program			College of Engineering		
Key: <u>I</u> ntroduced	<u>R</u> einforced	<u>A</u> ssessed			
Courses SLOs	COP 3504 Intro CS	CEN 3031 Software Engineering	COT 4501 (for Software track) or EEL 3135 (for Hardware track)	CIS 4914 or EEL 4924C Senior Design	
Content Knowledge					
#1			I, A*	A*	
#2			I, A*	A*	
Critical Thinking					
#3	Ι			A*	
Communication					
#4		I, A*		A*	

*See page 5 for a description of the Assessments for the courses marked 'A' in the above table.

Assessment Cycle

We assess each course in the Fall semester of each year, analyze the results by February of each year, implement the improvements by April, and then disseminate the results in May.

Assessment Cycle Chart

Assessment Cycle for:

Computer Engineering Program

College of Engineering

Analysis and Interpretation: Improvement Actions: Dissemination: February 1 of each year Completed by April 1 of each year Completed by May 1 of each year

Year	12-13	13-14	14-15	15-16	16-17	17-19
SLOs						
Content Knowledge						
#1	Х	Х	Х	Х	Х	Х
#2	Х	Х	Х	Х	Х	Х
Critical Thinking						
#3	Х	Х	Х	Х	Х	Х
Communication						
#4	Х	Х	Х	Х	Х	Х

4

Methods and Procedures

SLO Assessment Matrix

The SLO Assessment Matrix is new for the 2012-13 Academic Assessment Plans. We have populated the matrix to the extent possible with the information we have available. Please complete the matrix.

Assessment Method - For each SLO, please enter the assessment method you are using – exam (course, internal, or external), project, paper, presentation, performance, etc.

Measurement – list the measurement procedure you use for this outcome. It can be a faculty-developed rubric with the minimum acceptable level identified, an exam score and the minimum passing score, or other measurement. **Required for 2012-13: Include at least one example of a rubric used to assess an SLO.**

2012-13 Student Learning Outcome	Assessment Method	Measurement Procedure
Apply knowledge of mathematics and science to computer engineering problems.	Student course performance, in exams and/or projects, as determined by course instructor and a faculty committee	Faculty-developed rubric: Likert scale (1-5, with 2 as minimal achievement of the SLO)
Design and conduct computer- engineering experiments, analyzing and interpreting the data.	Student course performance, in exams and/or projects, as determined by course instructor and a faculty committee	Faculty-developed rubric: Likert scale (1-5, with 2 as minimal achievement of the SLO)
Design a computer engineering system, component or process to meet desired needs within realistic economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability constraints.	Student course performance, in exams and/or projects, as determined by course instructor and a faculty committee	Faculty-developed rubric: Likert scale (1-5, with 2 as minimal achievement of the SLO)
Communicate technical data and design information effectively in writing and in speech to other computer scientists and engineers.	Student in-class Presentation	Rubric

SLO Assessment Matrix for 2012-13

Assessment of the Student Learning Outcomes is performed via direct and indirect assessments.

Direct Individual Student Assessments

The process for direct assessment of outcomes has three components, described below.

1. Qualitative evaluation and quantitative measurement by the instructor

The quantitative measurement of achievement of each outcome is assessed in a subset of the required courses in the program. This analysis is performed and reported by the instructor of each course in the form of the per-course Course Outcomes Assessment report. Each semester, the instructor of each course that is charged with assessing outcomes, completes one Course Outcomes Assessment Form for each outcome that is assessed in the course. The instructor establishes the instrument(s) to be used to assess each outcome. These are typically questions embedded in student assignments, exams, quizzes, or other evaluative mechanisms. In consultation with the course committee, the instructor also establishes the Likert-scale threshold(s), which maps the instrument's scale to the 1-5 Likert scale for achieving each outcome. The instructor also supplies the relevant statistics for the course. These include the number of students, the grading scale and the average score for the embedded question, the score required to minimally achieve the outcome (Likert 2), the percentage of students who achieved the outcome, and the average Likert-scale value. Finally, the instructor makes any relevant comments regarding the achievement of the outcome. In addition, the instructor of each course prepares a set of course materials, which includes the course syllabus, copies of the Course Outcomes Assessment Reports, copies of the instruments used to assess the outcomes, and sample graded student work. This information is stored by the respective Departments. These materials are the primary source of information for the next level of the assessment process, the Course Committee Report.

6

1.1. Sample Rubric.

Below is a sample rubric for SLO #4, Communication, to be assessed in CEN-3031 Software Engineering, and in CIS 4914 or EEL 4924C, Senior Design.

	Unsatisfactory(1)	Satisfactory(2-3)	Adept (4)	Exemplary (5)
1. Prepares a written report for an engineering project in a organized and professional manner	Presents information to the audience in an unprofessional or disorganized format with many errors in grammar and spelling.	Presents information to the audience in an organized report, but with grammar and spelling errors.	Communicates meaning to the audience in an organized, professional report with very few grammar and spelling errors.	Skillfully communicates meaning to the audience with excellent organization, format, wording, and virtually error free grammar and spelling.
2. Presents findings orally to audiences in an effective way	Presents in a manner that is disorganized or obviously unrehearsed, with poor quality visual aids or voice projection.	Delivers an oral presentation with supporting materials, but needs more work to help audience understand key points.	Delivers an organized presentation with effective central message and supporting materials	Confidently delivers a memorable, organized, and polished presentation with effective central message and supporting materials.
3. Uses appropriate graphs or tables to display and interpret results	Figures or tables in written and oral reports have major errors, and are difficult to read or understand.	Incorporates figures and tables into written or oral reports with some errors in presentation and marginal discussion.	Incorporates figures and tables into written or oral reports, and discusses their interpretation	Incorporates well labeled and organized figures and tables into written or oral reports, and fully discusses their interpretation for the audience.

2. Qualitative evaluation by the course committee

The qualitative evaluation of the achievement of all outcomes is assessed in each course. This evaluation is performed and reported by a course committee, consisting of at least three faculty members who are involved in either teaching the course or otherwise have expressed interest in it. This committee makes recommendations and suggestions for improvements in the course and its relation to other courses in the curriculum, improvements in the achievement of the outcomes, and improvements in the process itself. They produce the Course Committee Evaluation report containing their evaluations and recommendations. Each semester, the course committee is convened by the instructor of each course in which program outcomes are assessed.

Each committee is tasked with the following:

7

- 1. To evaluate the course in terms of its contents and its place within the curriculum,
- 2. To perform a qualitative analysis of the quantitative data in the Course Outcomes Assessment Report and course materials supplied by the instructor,
- 3. To examine, evaluate, and ratify the quantitative criteria used, the instruments chosen, the statistics provided, the Likert scale values used, and the sample student graded work, and

- 4. To generate suggestions/recommendations in three categories:
 - a. Recommendations to future instructors,
 - b. Recommendations to curriculum governance, and
 - c. Recommendations on improvement of the process.

The course committee fills in one table per outcome assessed in the course, with evaluative comments on the instruments chosen, the statistics provided, the Likert scale values used, and the sample student graded work. The Course Committee Evaluation Reports are collected by the SLO Coordinator, for the third and final component of the program outcomes assessment process.

3. Overall analysis of the results

Overall analysis of the achievement of each outcome is performed across all courses in which it is assessed. This analysis is performed by the SLO Coordinator, who analyzes the reports produced by each individual course committee, collects (and generates further) recommendations for improvements at all levels, directs those recommendations to the proper governance bodies, and follows up on actions triggered by those recommendations. Once per semester, the SLO Coordinator collects the Course Committee Evaluation Reports from the courses that assess outcomes, and takes the "birds-eye" view of each outcome, examining the results and recommendations across all courses that assess that outcome. He also gathers any feedback from other, program-level indirect assessment mechanisms. The SLO Coordinator refers suggestions and recommendations to the Joint CEN Curriculum Committee for consideration and/or action. The Coordinator is also charged with following up in subsequent semesters on such actions, and determining whether recommendations initiated earlier to address any shortcomings have engendered program improvements.

Indirect Student Assessments

Indirect assessments are carried out via student focus groups and student exit surveys. These assessments provide feedback on the entire Program, including its Mission and Student Learning Outcomes.

Student focus groups

Students meet with one or more faculty members to discuss the Program Mission, their attainment of the Student Learning Outcomes, and ideas for new courses or modifications to existing courses.

Student exit surveys

8

Students are asked to complete an exit survey before they graduate. Students are asked regarding their future employment or graduate school plans, their experience in courses at the University of Florida, the effectiveness of undergraduate advising, and their ideas for improving the program.

Assessment Oversight

Name	Department Affiliation	Email Address	Phone Number
Herman Lam	Electrical and Computer Engineering (ECE)	hlam@ufl.edu	392-2689
Beverly Sanders	Computer and Information Science and Engineering (CISE)	sandersl@cise.ufl.edu	505-1563
Douglas Dankel	CISE	ddd@cise.ufl.edu	505-1578